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Abstract 

Context: The strong relationship between serum anti-Müllerian hormone (AMH) levels and the 

number of antral follicles supports the use of AMH measurements as a quantitative marker of the 

ovarian follicular status. Yet, it still is unclear whether the aptitude of an individual follicle to 

produce AMH reflects its reproductive competence.  

Objective: This study examined the possible relationship between serum or follicular fluid (FF) 

AMH concentrations and the fate of the ensuing oocytes and embryos obtained by in vitro 

fertilization-embryo transfer (IVF-ET) conducted in monodominant follicle cycles. 

Design: Prospective study

Setting: University of Paris XI, AP-HP, INSERM U782. 

Patients: 118 infertile IVF-ET candidates.  

Interventions: Concentrations of AMH, progesterone, and estradiol were measured in the serum on 

cycle day 3 (d3) and on the day of oocyte pickup (dOPU), and in FF. Cycles were sorted into 3 sets of 

3 distinct groups according to whether serum d3, serum dOPU, and FF AMH concentrations were 

</=30th centile (low AMH), between the 31st and the 70th centile (average AMH) or >70th centile (high 

AMH) of measurements.  

Main outcome measure: Clinical pregnancy and embryo implantation rates.

Results: Clinical pregnancy rates (5.7%, 20.0%, and 39.5%, respectively; P <0.002) and embryo 

implantation rates (11.8%, 30.8%, and 65.4%, respectively; P <0.001) were markedly different among 

the low, moderate, and high FF AMH groups, but not among the serum (d3 or dOPU) AMH groups. 

Fertilization rates and embryo morphology remained similar irrespective of AMH concentrations in 

the serum or in FF. Incidentally, FF AMH concentrations were negatively correlated with FF 

progesterone (r=-0.27, P <0.003) and FF estradiol (r=-0.21, P <0.02) concentrations. 

Conclusions: Concentrations of AMH in the FF, but not in the serum, constitute a useful follicular 

marker of embryo implantation and are negatively related to FF progesterone and estradiol 

concentrations. 
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Introduction 

Growing evidence indicates that anti-Müllerian hormone (AMH), a glycoprotein that is 

exclusively produced by the granulosa cells of ovarian follicles in the adult female (1), is a unique 

biomarker of the ovarian follicular status. In contrast with inhibin B and estradiol, AMH is produced, 

presumably FSH-independently (2,3), in a wide range of follicles that goes from the primary to the 

small antral stages of folliculogenesis (4-6). In line with this, on cycle day 3, peripheral AMH levels 

have shown greater sensitivity to ovarian ageing (7), stronger relationship with the number of early 

antral follicles (8), and improved cycle-to-cycle reproducibility (9), as compared to inhibin B, 

estradiol, and FSH levels. In addition, serum AMH levels are a useful predictor of the ovarian 

response to controlled ovarian hyperstimulation (COH) (10-12).  

Yet, the possible relationship between AMH production by an individual follicle and its 

functional quality (i.e. follicle aptitude to release an oocyte able to become a developing embryo) 

remains to be demonstrated. Indeed, previous studies conducted in different species as the rat (4), the 

sheep (13), and humans (6) have shown that granulosa cells from atretic follicles fail to express 

AMH. In addition, in regularly ovulating women, AMH content in individual follicles is related to 

both the number of early antral follicles on day 3 and their responsiveness to COH (14). These data 

indicate that women endowed with more antral follicles may also show increased per-follicle AMH 

levels, which implicitly suggests that peripheral AMH levels reflect not only antral follicle count but 

also per-follicle AMH production. Since direct information on the relationship between per-follicle 

AMH production and the outcome of the oocyte/embryo still is lacking, new insights into this 

sensitive issue could help to clarifying the role of AMH as a qualitative indicator of ovarian follicular 

status. 

The present study was then conducted to investigate the possible relationship between 

AMH concentrations, measured both in the serum and in the follicular fluid (FF), and the fate of 

oocytes and embryos generated in IVF-ET conducted in monodominant follicle cycles. Indeed, 

contrary to COH, in this modality of treatment, a single follicle achieves preovulatory maturation and 

only one oocyte and embryo are obtained. This may be particularly instrumental in investigating this 

issue as it allows the adequate traceability between the single follicle and the ensuing oocyte and 

embryo.  

Materials and Methods 

Subjects 
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One hundred eighteen infertile women, 26 to 41 years of age, were studied prospectively. 

All of them met the following inclusion criteria: 1) both ovaries present, deprived of morphological 

abnormalities, and adequately visualized in transvaginal ultrasound scans; 2) menstrual cycle length 

range between 25 and 35 days; 3) no current or past diseases affecting ovaries or gonadotropin or sex 

steroid secretion, clearance, or excretion; 4) no clinical signs of hyperandrogenism; 5) body mass 

indexes (BMI) ranging between 18 and 25 kg/m2. Infertility was due to sperm abnormalities (39%), 

tubal abnormalities (30%), endometriosis (12%) or was unexplained (19%). In agreement with the 

inclusion criteria, no patient suffering from polycystic ovary syndrome has been enrolled. An 

informed consent was obtained from all women and this investigation received the approval of our 

internal Institutional Review Board. 

Cycle monitoring 

On cycle day 3 (d3), women underwent blood samplings by venipuncture at 

approximately 9 AM. Sera were separated and frozen in aliquots at –80 °C for subsequent centralized 

analysis. Later in the morning, the number and the sizes of early antral follicles were assessed by 

ultrasound. From cycle day 8 onward, selection of the dominant follicle was monitored by ultrasound. 

When the mean diameter of the dominant follicle exceeded 12 mm, to prevent the risk of premature 

LH peak and to control further follicular maturation, women were administered subcutaneously 0.5 

mg of a GnRH antagonist (cetrorelix acetate; Cetrotide 0.25 mg, Serono Pharmaceuticals, Boulogne, 

France) and 150 IU of hMG (Menopur, Ferring Pharmaceuticals, Gentilly, France) daily until the day 

of hCG (Gonadotrophine Chorionique "Endo", Organon Pharmaceuticals, Saint-Denis, France) 

administration. The choice of starting hMG treatment once follicle dominance had been achieved 

aimed at preventing the rescue of additional subordinated follicles. Eventually, women received a 

5,000-IU hCG injection intramuscularly when the dominant follicle diameter exceeded 16 mm. The 

single oocyte was picked up approximately 34 hours after hCG administration (dOPU) and ET was 

performed 2 days after oocyte pickup. Top quality embryo was defined on day 2 as those having no 

multinucleated blastomeres, four or five blastomeres, and less than 20% anucleated fragments (15). 

According to the present study’s design, each patient had only 1 oocyte retrieved and only 1 embryo 

obtained and transferred. Luteal phase was supported with micronized progesterone (Estima Gé, Effik 

Pharmaceuticals, Bièvres, France, 600 mg/day) administered daily by vaginal route starting on the 

evening of ET. 

Serum and follicular fluid collection 

On dOPU, women underwent a blood sampling by venipuncture at approximately 9 AM. 

Sera were separated and frozen in aliquots at –80 °C for subsequent centralized analysis. Under 

transvaginal ultrasound guidance, the follicular fluid (FF) from the dominant follicle was gently and 

thoroughly aspirated using a 10-mL syringe, then maintained at steady temperature conditions (37 °C) 
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until the oocyte was found and isolated. Meanwhile, the aspiration needle was kept steady inside the 

follicle and, in case of negative oocyte recovery, sequential follicular flushings were performed using 

10-mL syringes filled with 3 mL of a balanced salt solution (Tyrode’s salt solution, Eurobio 

Pharmaceuticals, Courtaboeuf, France). All flushing volumes were discarded. Oocyte pickup failure 

was defined by a negative oocyte recovery after 3 consecutive follicular flushings. The FF was then 

centrifuged at 3,000 g for 15 minutes at 4 °C to eliminate cellular elements and subsequently frozen at 

–80 °C for centralized hormonal analysis. Time elapsed between follicular aspiration and FF 

cryopreservation did not exceed 30 minutes. 

Hormonal measurements in serum and FFs 

Blood samples obtained on d3 and dOPU were assayed for AMH, progesterone and 

estradiol. Serum AMH levels were determined using a “second generation” enzyme-linked 

immunosorbent assay (reference A16507; Immunotech Beckman Coulter Laboratories, Villepinte, 

France). Intra- and interassay coefficients of variation were <6% and <10%, respectively, lower 

detection limit at 0.13 ng/mL, and linearity up to 21 ng/mL for AMH. Serum progesterone and 

estradiol levels were determined by an automated multi-analysis system using a chemiluminescence 

technique (Advia-Centaur, Bayer Diagnostics, Puteaux, France). For progesterone, lower detection 

limit was 0.1 ng/mL, linearity up to 60 ng/mL, and intra- and interassay coefficients of variation were 

8% and 9%, respectively. For estradiol, lower detection limit was 15 pg/mL, linearity up to 1,000 

pg/mL, and intra- and interassay coefficients of variation were 8% and 9%, respectively. Conversion 

factor to SI units are 7.14 for AMH, 3.18 for progesterone, and 3.67 for estradiol. 

For AMH, progesterone, and estradiol assays in the FF, we used similar methodology as 

described above. To avoid possible bias due to FF volume variability, hormone concentrations in the 

FF were adjusted to its protein content, as reported elsewhere (14,16). Proteins were measured 

according to the conventional Biuret reaction (17) using an automated multi-analysis system (AU640, 

Olympus, Rungis, France). FF hormone levels were expressed as ng/g of protein for both AMH and 

progesterone and mg/g of protein for estradiol.  

Ultrasonographic measurements 

Ultrasonographic measurements were performed using a 5.0-9.0 MHz multi-frequency 

transvaginal probe (Voluson 730 Expert, General Electric Medical Systems, Paris, France) according 

to a methodology previously described (8, 9). In brief, on d3, all antral follicles that measured 3-10 

mm in mean diameter were carefully counted in both ovaries. On the day of hCG administration, the 

size of the dominant follicle was the mean of two orthogonal diameters.  

Definition of AMH groups 



 

Fanchin et al. AMH and follicle quality                                                                       6 

Cycles were sorted arbitrarily into 3 sets of 3 different groups according to serum d3 and 

dOPU and FF AMH concentrations. Cutoffs for defining low, average, and high AMH concentrations 

corresponded arbitrarily to the round values of the 30th and 70th centiles of each measurement. Hence, 

according to these criteria, serum d3 AMH levels determined 3 different groups of patients: low-d3 

(AMH </=1.0 ng/mL, n=31), average-d3 (AMH 1.1- 2.0 ng/mL, n=45), and high-d3 (AMH >2.0 

ng/mL, n=42); serum dOPU AMH levels determined 3 other distinct groups: low-dOPU (AMH 

</=1.0 ng/mL, n=39), average-dOPU (AMH 1.1- 2.0 ng/mL, n=33), and high-dOPU (AMH >2.0 

ng/mL, n=46); and FF AMH levels determined 3 additional groups: low-dOPU (AMH </=50.0 ng/g 

of protein, n=35), average-dOPU (AMH 50.1- 100.0 ng/g of protein, n=40), and high-dOPU (AMH 

>100.0 ng/g of protein, n=43). 

Statistics 

 The measure of central tendency used was the mean and the measure of variability was 

the standard error. Medians and ranges were used when normality of data distribution could not be 

ascertained. Comparisons between continuous variables from the low, average, and high AMH groups 

were performed using ANOVA when data distribution was normal or the Kruskal-Wallis test when 

normality could not be confirmed. To determine the respective influence of different independent 

variables such as ages, number of antral follicle count, hormonal values on pregnancy and 

implantation rates we used binomial logistic regression and results were expressed as P and 95% 

confidence intervals (CI). Paired comparisons were made with the paired Student’s t-test or the 

Wilcoxon signed rank test when appropriate. Relationship between two continuous variables was 

assessed by correlation when they were independent from each other and by simple regression when 

there was a dependency relationship. The Spearman’s test was used to determine if coefficients of 

correlation (r) were significantly different from zero. The present study was powered to detect 

anticipated differences of 25% in embryo implantation rates at >80% power at 0.05 significance level. 

A P value <0.05 was considered statistically significant. 

Results 

Patient characteristics, cycle monitoring and embryology data 

Population characteristics in the low, average, and high serum and FF AMH groups are 

summarized in Table 1. As mentioned, women’s ages, BMIs, menstrual cycle lengths, and indications 

for IVF-ET were comparable in the 3 sets of AMH groups (d3, dOPU, FF). In line with this, neither 

serum nor FF AMH levels were significantly correlated with women’s ages, BMIs, menstrual cycle 

lengths. Overall, on cycle day 3, median antral follicle (3-10 mm) count was 9 (range: 1-24). As 

expected, this measure was positively correlated with AMH levels on d3 (r=0.74; P <0.0001), dOPU 

(r=0.71; P <0.0001), and in the FF (r=0.29; P <0.002). 
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Cycle monitoring and embryology data in the low, average, and high serum and FF AMH 

groups are presented in Table 2. The total dose of hMG used for maintaining dominant follicle growth 

was similar irrespective of AMH levels in the serum and FF. It is noteworthy that the time necessary 

to achieve follicle maturation (>16 mm in diameter) was longer in patients showing higher serum d3 

AMH. Indeed, the day of hCG administration was positively correlated with serum AMH levels on d3 

(r=0.31; P <0.001) and on dOPU (r=0.29; P <0.001), but not with FF AMH levels. As serum AMH 

levels on d3 (r=0.29; P <0.003) and on dOPU (r=0.26; P <0.008) were correlated with the day in 

which GnRH antagonist-hMG treatment was started but not with the remaining time required to reach 

follicle maturation, it is possible that the slower follicular growth in patients having higher serum 

AMH levels occurred exclusively before GnRH antagonist-hMG treatment. Moreover, on the day of 

hCG administration, the mean size of the dominant follicle and serum estradiol levels were 

comparable in the 3 sets of AMH groups and were not correlated with serum or FF AMH levels. 

We observed a decrease in the prevalence of oocyte retrieval failure from the low to the 

high FF AMH groups, irrespective of the number of follicular flushings performed. This phenomenon 

was not observed in the d3 and dOPU AMH groups. Fertilization rates and the prevalence of top 

quality embryos available remained comparable in the 3 sets of groups.  

Hormonal data 

Overall fluctuations of serum AMH, progesterone, and estradiol levels from d3 to dOPU 

and their absolute FF concentrations are illustrated in Figure 1. Whereas progesterone and estradiol 

levels increased significantly (P <0.0001), median AMH levels remained steady between d3 at 1.56 

ng/mL (range: 0.13-7.26) and dOPU at 1.50 ng/mL (range: 0.13-6.96). Further, we observed, on 

dOPU, a positive correlation between serum and FF levels of AMH (r=0.47; P <0.0001), progesterone 

(r=0.53; P <0.0001), and estradiol (r=0.37; P <0.0001). In addition, FF AMH levels were negatively 

correlated with FF progesterone (r=-0.27; P <0.0004) and estradiol (r=-0.21; P <0.03) levels. In 

contrast, serum AMH, progesterone, and estradiol levels were correlated neither on d3 nor on dOPU. 

Further, serum AMH levels (d3 and dOPU) and FF AMH levels were correlated with early antral 

follicle counts on d3 (r=0.75; P <0.0001; r=0.71; P <0.0001, and r=0.29; P <0.002, respectively). 

Incidentally, as expected, before adjustment of values to protein content, AMH was roughly 2.5 fold 

as concentrated in the FF of preovulatory follicles as in the serum on dOPU (3.82 ng/mL versus 1.50 

ng/mL, respectively).  

Clinical pregnancy, ongoing pregnancy, and implantation rates 

Clinical pregnancy, ongoing pregnancy, and embryo implantation rates are presented in 

Figure 2. As shown, clinical pregnancy (gestational sac observed at ultrasound scans at around 7 

weeks of amenorrhea), ongoing pregnancy (>12 weeks of amenorrhea) rates per oocyte retrieval as 

well as embryo implantation rates (total number of gestational sacs x 100/total number of embryos 
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transferred) increased dramatically from the low to the high FF AMH groups (5.7%, 20.0%, and 

39.5%, P <0.002; 5.7%, 17.5%, and 32.6%, P <0.01; and 11.8%, 30.8%, and 65.4%, P <0.001, 

respectively). In contrast, the slight differences among these IVF-ET outcome parameters did not 

reach statistical significance in the 2 sets of serum AMH groups. 

Accordingly, binomial logistic regression analysis indicated that only FF AMH levels 

were significantly associated with clinical pregnancy (P <0.001; CIs, 1.00-1.01) and embryo 

implantation rates (P <0.003; CIs, 1.00-1.01), in contrast with other parameters such as patient’s ages 

(P <0.86; 0.87-1.17 and P <0.40; 0.89-1.30, respectively), antral follicle count on d3 (P <0.15; 0.96-

1.24 and P <0.06; 0.98-1.34), d3 AMH (P <0.80; 0.55-2.13 and P <0.35; 0.27-1.59), and dOPU AMH 

(P <0.23; 0.31-1.32 and P <0.73; 0.30-2.31). Further, the present study was not adequately powered 

to address the possible relationship between ovarian AMH production and pregnancy loss. Overall, 4 

first-trimester pregnancy losses out of 27 clinical pregnancies (14.8%) were observed in our series 

and we could not detect any statistically significant variation in the incidence of this event among 

women who diplayed low, intermediate, or high d3, dOPU, and FF AMH levels. 

Discussion 

This study used the clinical model of monodominant follicle IVF-ET to determine 

whether AMH production by a single preovulatory follicle, assessed by FF AMH measurements, is 

positively related to the fate of the ensuing oocyte and embryo. Although peripheral AMH levels have 

hitherto been shown to reflect quantitatively the available antral follicle pool (8,7,10,11), a qualitative 

relationship between AMH production and follicle competence is also conceivable. 

The present results support the hypothesis that a direct link exists between aptitude of 

granulosa cells to produce AMH and functional quality of the oocyte, as reflected by its competence 

to become an embryo endowed with adequate implantation potential. This striking relationship 

implies a number of cellular mechanisms. First, it is possible that granulosa cell metabolism and 

embryogenic competence of the oocyte are interrelated. Indeed, some previous studies have shown 

that the degree of apoptosis of both mural and cumulus granulosa cells negatively affects the 

developmental competence of the oocyte (18,19). In agreement with this, atretic human (6) and 

animal (4,13) follicles do not express AMH. In addition, a plethora of studies have identified a 

relationship between granulosa cell by-products measured in pooled FF, such as steroids, 

glycoproteins, proteolytic enzymes, etc., and oocyte/embryo outcome (16,20-24). Furthermore, 

growing evidence indicates that, in preovulatory follicles, the oocyte directly activates several 

physiological processes that occur in its surrounding granulosa cells, including plasminogen activator 

production (25), and LH receptor (27), kit ligand (27), and AMH (28) gene expression. Incidentally, 

the observation that AMH mRNA expression is lower in mural than in cumulus granulosa cells (29) is 

in keeping with this hypothesis. 
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Moreover, we observed a remarkable lack of variation of serum AMH levels between 

two distinct points in the menstrual cycle (d3 and dOPU). This finding corroborates the hypothesis 

that circulating AMH levels remain steady throughout the cycle, probably due to multi-staged 

follicular production (4-6) and presumable FSH-independence (2,3) of AMH. In addition, in contrast 

to FF AMH concentrations, we failed to relate peripheral AMH levels on d3 or dOPU with embryo 

implantation. Accordingly, the incidence of oocyte retrieval failure -a phenomenon that has been 

attributed to follicle quality defects (30)- was related with FF but not serum AMH levels. The 

differential predictability of FF versus serum AMH levels may be explained by the fact that 

circulating AMH levels reflect quantitatively the whole pool of AMH-producing follicles but are less 

effective to discriminate per-follicle AMH production. In keeping with this hypothesis is our 

observation that antral follicle counts are more strongly related to serum AMH levels than FF AMH 

levels as well as the conflicting literature on the possible link between peripheral AMH levels and 

embryo implantation (12,31). Finally, our observation of a positive correlation between serum AMH 

levels (d3 and dOPU) and the time necessary to achieve follicle maturation (>16 mm in diameter), 

mainly due to a shorter time to dominance in low AMH patients, is in conformity with the putative 

reduction in the follicular phase length in ovarian-aged women (32). 

It is also noteworthy that the negative impact of low per-follicle AMH production on 

pregnancy and implantation outcome could not be anticipated by the analysis of oocyte fertilization 

and top-quality embryo rates. Indeed, oocyte fertilization aptitude and embryo morphology remained 

statistically similar among FF or serum AMH groups, though a trend for better quality embryos was 

noted in high AMH groups. Given that serum AMH levels have been recently associated with embryo 

morphology (33), this issue deserve further confirmation in adequately powered studies.

The present data indicated a negative relationship between AMH and steroid levels in the 

FF. Although the exact reasons for this phenomenon remain unknown, the reported inhibiting effect 

of AMH on aromatase activity and estrogen production (34) constitutes a plausible explanation for 

the negative correlation between FF AMH and estradiol levels. Further, the remarkable negative 

correlation between FF AMH and progesterone concentrations confirm our previous results (14) and 

may be explained by at least two mechanisms. On the one hand, AMH may be implicated in the 

regulation of progesterone production by the preovulatory follicle. Accordingly, Kim et al. (35) have 

previously demonstrated that the administration of recombinant human AMH to cultured luteinized 

granulosa cells inhibits their basal and epidermal growth factor (EGF)-stimulated progesterone 

production. On the other hand, luteinization itself may lead to an additional decrease of AMH 

production by the granulosa cells. This hypothesis is strengthened by the reduced expression of AMH 

and its type II receptor mRNA in corpora lutea as compared to small or large antral follicles from rats 

(4), and the decline in serum AMH levels observed after hCG administration in controlled ovarian 

hyperstimulated cycles (36). The mechanisms underlying the decrease of AMH production by 

luteinized follicles and its physiological role remain unclear. Yet, the present results are in line with 
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previous reports indicating that, despite preovulatory maturation and luteinization, follicles still 

contain sizeable amounts of AMH (1,14). The issue on whether this phenomenon represents an active 

AMH production by preovulatory luteinized follicles and/or it is merely the resultant of an early-stage 

follicle production remain to be studied.  

In conclusion, the results of the present study indicate that FF AMH concentrations are 

strongly and positively associated with embryo implantation. They suggest that FF AMH levels 

reflect granulosa cell functioning and oocyte health better than do serum AMH levels, and may 

constitute an alternative marker of ovarian ageing. In addition, by extrapolation, FF AMH 

measurements should help to distinguish the embryos that are the most likely to achieve implantation 

in IVF-ET conducted in stimulated cycles. Indeed, embryo selection is a precondition to improve 

outcome of IVF-ET in stimulated cycles without increasing multiple pregnancy rates. This issue is of 

special interest as the present investigation failed to find any significant difference in the 

morphological scoring of embryos originated from high or low AMH-producing follicles. Yet, 

additional prospective studies are necessary to challenge the hypothesis that FF AMH concentrations 

are useful to assist the selection of the best embryos to transfer. 
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Legends 

Figure 1 White box-and-whiskers depict the dynamics of serum AMH, progesterone, and estradiol 

levels from cycle day 3 (d3) to the day of oocyte pickup (OPU) in monodominant follicle IVF-ET 

cycles. Horizontal lines inside the boxes represent median levels. Upper and lower limits of the boxes 

and whiskers represent the 75th and 25th centiles and 90th and 10th centiles. Values outside the 90th and 

10th centile limits are represented as dots. Note that, contrary to serum progesterone and estradiol 

levels, which showed an expected significant increase (P <0.0001), serum AMH levels remained 

steady from d3 to dOPU. Gray box-and-whiskers illustrate FF hormone levels, in particular, the 

residual yet sizeable AMH production by follicles having undergone preovulatory maturation and 

luteinization. Note: conversion factor to SI units are 7.14 for AMH, 3.18 for progesterone, and 3.67 

for estradiol.  

Figure 2 Clinical pregnancy (gestational sac observed at ultrasound scans at around 7 weeks of 

amenorrhea; gray bars), ongoing pregnancy (>12 weeks of amenorrhea; black bars) rates per oocyte 

retrieval as well as embryo implantation rates (total number of gestational sacs x 100/total number of 

embryos transferred; white bars) in the 3 AMH concentration groups. Notice that all 3 IVF-ET 

outcome parameters increased dramatically from the low to the high FF AMH groups (C panel; P 

<0.002, P <0.01, P <0.001, respectively) but remained similar in the 2 sets of serum AMH groups (d3 

and dOPU; A and B panels, respectively). Note: conversion factor to SI units are 7.14 for AMH, 3.18 

for progesterone, and 3.67 for estradiol. 



TABLE 1. Patient characteristics in the low, average and high AMH groups

Serum d3 AMH levels (ng/mL) Serum dOPU AMH levels (ng/mL) 
FF AMH levels (ng/g of 

protein) 

Low  
</=1.0 

Average 
1.1-2.0 

High  
>2.0 

Low  
</=1.0 

Average 
1.1-2.0 

High  
>2.0 

Low  
</=50.0 

Average 
50.1-
100.0 

High  
>100.0 

Number of cycles 31 45 42 39 33 46 35 40 43 

Women’s ages (years)
a 34.1 ± 

0.6
33.3 ± 
0.5

33.6 ± 
0.5

33.9 ± 
0.5

33.7 ± 
0.6

33.3 ± 
0.5

33.5 ± 
0.6

33.5 ± 
0.6

33.8 ± 
0.4

BMI (kg/cm
2
)
a 23.1 ± 

0.9 
21.2 ± 
0.5 

22.0 ± 
0.4 

22.7 ± 
0.7 

21.8 ± 
0.5 

21.6 ± 
0.4 

22.4 ± 
0.7 

21.2 ± 
0.4 

22.6 ± 
0.6 

Menstrual cycle (days)
a 27.8 ± 

0.3
27.5 ± 
0.2

27.9 ± 
0.3

27.7 ± 
0.3

27.6 ± 
0.3

27.9 ± 
0.3

27.9 ± 
0.4

27.6 ± 
0.3

27.7 ± 
0.3

Indications for IVF-ET 
(%) : 

         

Male factor 26 42 48 33 39 45 34 45 40 

Tubal factor 32 22 36 23 30 35 37 18 34 

Endometriosis 13 20 2 11 21 7 9 15 12 

Unexplained 29 16 14 33 10 13 20 22 14 

a
Means ± SE;  
Differences among groups are not statistically significant



TABLE 2. Cycle monitoring and embryology data in low, average and high AMH groups

Serum d3 AMH levels (ng/mL) Serum dOPU AMH levels (ng/mL) 
FF AMH levels (ng/g of 

protein) 

Low  
</=1.0 

Average 
1.1-2.0 

High  
>2.0 

Low  
</=1.0 

Average 
1.1-2.0 

High  
>2.0 

Low  
</=50.0 

Average 
50.1-
100.0 

High  
>100.0 

Number of cycles 31 45 42 39 33 46 35 40 43 

Total hMG dose (IU)  290 ± 25 373 ± 22 353 ± 23 315 ± 22 382 ± 26 342 ± 23 334 ± 19 375 ± 22 324 ± 27 

Day of hCG administration 10.7 ± 
0.3 

12.2 ± 
0.3 

12.8 ± 
0.4

a
11.5 ± 
0.3 

11.9 ± 
0.4 

12.6 ± 
0.4 

11.7 ± 
0.4 

12.1 ± 
0.3 

12.2 ± 
0.4 

Dominant follicle size 
(mm)

b
17.2 ± 
0.2

17.5 ± 
0.1

17.6 ± 
0.2

17.2 ± 
0.1

17.7 ± 
0.2

17.5 ± 
0.1

17.3 ± 
0.1

17.5 ± 
0.2

17.5 ± 
0.2

Serum estradiol (pg/mL)
b

258 ± 23 272 ± 21 252 ± 15 258 ± 21 283 ± 25 248 ± 15 262 ± 18 285 ± 26 246 ± 19 

Number of follicular 
flushings

c
0.5 ± 
0.2

0.4 ± 
0.1

0.5 ± 
0.1

0.7 ± 
0.2

0.5 ± 
0.1

0.6 ± 
0.1

0.5 ± 
0.2

0.7 ± 
0.2

0.5 ± 
0.1

% of oocyte retrieval 
failure (numbers)

d
16 

(5/31) 
20 

(9/45) 
10 

(4/42) 
13 

(5/39) 
27 

(9/33) 
9 

(4/46) 
29

e

(10/35) 
8 

(3/40) 
12 

(5/43) 

Fertilization rate (%) 60 68 79 59 83 72 71 70 70 

Top quality embryos (%) 33 70 55 47 68 52 41 65 53 

Continuous variables are means ± SE.
a
P< 0.0004 (serum d3 AMH groups, ANOVA). 
b
On the day of hCG administration. 
c
Required to retrieving the oocyte,if it was not present in the follicular fluid (maximum 3 flushings).
d
Cases in which no oocyte was retrieved despite 3 follicular flushings. 
e
 Statistically different as compared to the average (P< 0.02) and high (P< 0.04) FF AMH groups. 






